Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(7): 075001, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169054

RESUMO

A bifurcative step transition from low-density, high-temperature, attached divertor conditions to high-density, low-temperature, detached divertor conditions is experimentally observed in DIII-D tokamak plasmas as density is increased. The step transition is only observed in the high confinement mode and only when the B×∇B drift is directed towards the divertor. This work reports for the first time a theoretical explanation and numerical simulations that qualitatively reproduce this bifurcation and its dependence on the toroidal field direction. According to the model, the bifurcation is primarily driven by the interdependence of the E×B-drift fluxes, divertor electric potential structure, and divertor conditions. In the attached conditions, strong potential gradients in the low field side (LFS) divertor drive E×B-drift flux towards the high field side divertor, reinforcing low density, high temperature conditions in the LFS divertor leg. At the onset of detachment, reduction in the potential gradients in the LFS divertor leg reduce the E×B-drift flux as well, such that the divertor plasma evolves nonlinearly to high density, strongly detached conditions. Experimental estimates of the E×B-drift fluxes, based on divertor Thomson scattering measurements, and their dependence on the divertor conditions are qualitatively consistent with the numerical predictions. The implications for divertor power exhaust and detachment control in the next step fusion devices are discussed.

2.
Rev Sci Instrum ; 83(10): 10D701, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126875

RESUMO

The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman ß transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

3.
Rev Sci Instrum ; 82(3): 033515, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21456744

RESUMO

Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at ρ ≥ 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

4.
Rev Sci Instrum ; 81(10): 10D739, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033930

RESUMO

The use of lock-in amplifiers for phase sensitive detection of motional Stark effect (MSE) diagnostic signals is of critical importance to real-time internal current profile measurements in tokamak plasmas. A digital lock-in (DLI) upgrade utilizing field programable gate array firmware has been installed on the MSE system of the DIII-D tokamak for the eventual replacement of largely obsolete analog units. While the new digital system has shown a small reduction in electronic noise over the analog, the main advantages are reduced cost, hardware simplicity, compact size, and phase tracking during plasma operations. DLI recovery of MSE polarization angles was accomplished through use of reference processing to produce only photoelastic modulator (PEM) second harmonic frequencies and electronic signal processing to maximize the fidelity of the recovered signal. A simplified discrete analytical solution was found that accurately describes the new DLI hardware. The DLI algorithm was found to cause a prohibitively large oscillating artifact atop the demodulated signal. The artifact was caused by the accumulator interval not containing an exact integer number of PEM multiplier periods. Successful MSE measurements require the minimization of this oscillating artifact amplitude. The analytical solution was used to select an appropriate accumulator interval that both reduces the artifact and maintains the greatest temporal resolution possible. Sample EFIT equilibria reconstructions and corresponding safety factor profiles showed very close agreement between the analog and digital lock-ins.

5.
Rev Sci Instrum ; 78(5): 053504, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17552817

RESUMO

A neutral particle analyzer is used to measure the time-resolved energy spectrum of neutral hydrogen leaving a spheromak plasma. A gas cell filled with 10-50 mTorr of helium is used to strip electrons from incoming neutral hydrogen, lowering the minimum detectable energy well below that obtained with thin foils. Effective neutral particle temperature is calculated by fitting a Maxwellian energy distribution to the measured energy spectrum above and below approximately 300 eV. A computational model with approximated profiles of plasma density and neutral density is used with the measured neutral hydrogen flux to estimate the ion temperature. Measurement of the power flux due to neutral hydrogen emitted at the measurement location is extended to the whole plasma surface to estimate the total charge exchange power loss from the plasma. The initial results indicate that the charge exchange power loss represents only 2% of the total input gun power during the sustainment phase of the discharge.


Assuntos
Algoritmos , Magnetismo/instrumentação , Termografia/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Termografia/métodos
6.
Phys Rev Lett ; 93(20): 205002, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15600933

RESUMO

By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

7.
Phys Rev Lett ; 90(9): 095001, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12689228

RESUMO

By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

8.
Phys Rev Lett ; 88(12): 125004, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11909469

RESUMO

Magnetic fluctuations have been reduced to approximately 1% during discharges on the Sustained Spheromak Physics Experiment by shaping the spatial distribution of the bias magnetic flux in the device. In the resulting quiescent regime, the safety factor profile is nearly flat in the plasma and the dominant ideal and resistive MHD modes are greatly reduced. During this period, the temperature profile is peaked at the magnetic axis and maps onto magnetic flux contours. Energy confinement time is improved over previous reports in a driven spheromak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...